Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
J Infect ; 88(5): 106156, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38599549

ABSTRACT

OBJECTIVES: To identify patterns in inflammatory marker and vital sign responses in adult with suspected bloodstream infection (BSI) and define expected trends in normal recovery. METHODS: We included patients ≥16 y from Oxford University Hospitals with a blood culture taken between 1-January-2016 and 28-June-2021. We used linear and latent class mixed models to estimate trajectories in C-reactive protein (CRP), white blood count, heart rate, respiratory rate and temperature and identify CRP response subgroups. Centile charts for expected CRP responses were constructed via the lambda-mu-sigma method. RESULTS: In 88,348 suspected BSI episodes; 6908 (7.8%) were culture-positive with a probable pathogen, 4309 (4.9%) contained potential contaminants, and 77,131(87.3%) were culture-negative. CRP levels generally peaked 1-2 days after blood culture collection, with varying responses for different pathogens and infection sources (p < 0.0001). We identified five CRP trajectory subgroups: peak on day 1 (36,091; 46.3%) or 2 (4529; 5.8%), slow recovery (10,666; 13.7%), peak on day 6 (743; 1.0%), and low response (25,928; 33.3%). Centile reference charts tracking normal responses were constructed from those peaking on day 1/2. CONCLUSIONS: CRP and other infection response markers rise and recover differently depending on clinical syndrome and pathogen involved. However, centile reference charts, that account for these differences, can be used to track if patients are recovering line as expected and to help personalise infection.

2.
BMC Med ; 22(1): 143, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532381

ABSTRACT

BACKGROUND: Syndromic surveillance often relies on patients presenting to healthcare. Community cohorts, although more challenging to recruit, could provide additional population-wide insights, particularly with SARS-CoV-2 co-circulating with other respiratory viruses. METHODS: We estimated the positivity and incidence of SARS-CoV-2, influenza A/B, and RSV, and trends in self-reported symptoms including influenza-like illness (ILI), over the 2022/23 winter season in a broadly representative UK community cohort (COVID-19 Infection Survey), using negative-binomial generalised additive models. We estimated associations between test positivity and each of the symptoms and influenza vaccination, using adjusted logistic and multinomial models. RESULTS: Swabs taken at 32,937/1,352,979 (2.4%) assessments tested positive for SARS-CoV-2, 181/14,939 (1.2%) for RSV and 130/14,939 (0.9%) for influenza A/B, varying by age over time. Positivity and incidence peaks were earliest for RSV, then influenza A/B, then SARS-CoV-2, and were highest for RSV in the youngest and for SARS-CoV-2 in the oldest age groups. Many test positives did not report key symptoms: middle-aged participants were generally more symptomatic than older or younger participants, but still, only ~ 25% reported ILI-WHO and ~ 60% ILI-ECDC. Most symptomatic participants did not test positive for any of the three viruses. Influenza A/B-positivity was lower in participants reporting influenza vaccination in the current and previous seasons (odds ratio = 0.55 (95% CI 0.32, 0.95)) versus neither season. CONCLUSIONS: Symptom profiles varied little by aetiology, making distinguishing SARS-CoV-2, influenza and RSV using symptoms challenging. Most symptoms were not explained by these viruses, indicating the importance of other pathogens in syndromic surveillance. Influenza vaccination was associated with lower rates of community influenza test positivity.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Virus Diseases , Middle Aged , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , Seasons , Self Report , Respiratory Syncytial Viruses , United Kingdom , Respiratory Syncytial Virus Infections/epidemiology
3.
Nat Commun ; 15(1): 1008, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307854

ABSTRACT

SARS-CoV-2 reinfections increased substantially after Omicron variants emerged. Large-scale community-based comparisons across multiple Omicron waves of reinfection characteristics, risk factors, and protection afforded by previous infection and vaccination, are limited. Here we studied ~45,000 reinfections from the UK's national COVID-19 Infection Survey and quantified the risk of reinfection in multiple waves, including those driven by BA.1, BA.2, BA.4/5, and BQ.1/CH.1.1/XBB.1.5 variants. Reinfections were associated with lower viral load and lower percentages of self-reporting symptoms compared with first infections. Across multiple Omicron waves, estimated protection against reinfection was significantly higher in those previously infected with more recent than earlier variants, even at the same time from previous infection. Estimated protection against Omicron reinfections decreased over time from the most recent infection if this was the previous or penultimate variant (generally within the preceding year). Those 14-180 days after receiving their most recent vaccination had a lower risk of reinfection than those >180 days from their most recent vaccination. Reinfection risk was independently higher in those aged 30-45 years, and with either low or high viral load in their most recent previous infection. Overall, the risk of Omicron reinfection is high, but with lower severity than first infections; both viral evolution and waning immunity are independently associated with reinfection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Reinfection/epidemiology , United Kingdom/epidemiology
4.
Article in English | MEDLINE | ID: mdl-37923370

ABSTRACT

BACKGROUND: Little is known about the persistence of antibodies after the first year following SARS-CoV-2 infection. We aimed to determine the proportion of individuals that maintain detectable levels of SARS-CoV-2 antibodies over an 18-month period following infection. METHODS: Population-based prospective study of 20 000 UK Biobank participants and their adult relatives recruited in May 2020. The proportion of SARS-CoV-2 cases testing positive for immunoglobulin G (IgG) antibodies against the spike protein (IgG-S), and the nucleocapsid protein (IgG-N), was calculated at varying intervals following infection. RESULTS: Overall, 20 195 participants were recruited. Their median age was 56 years (IQR 39-68), 56% were female and 88% were of white ethnicity. The proportion of SARS-CoV-2 cases with IgG-S antibodies following infection remained high (92%, 95% CI 90%-93%) at 6 months after infection. Levels of IgG-N antibodies following infection gradually decreased from 92% (95% CI 88%-95%) at 3 months to 72% (95% CI 70%-75%) at 18 months. There was no strong evidence of heterogeneity in antibody persistence by age, sex, ethnicity or socioeconomic deprivation. CONCLUSION: This study adds to the limited evidence on the long-term persistence of antibodies following SARS-CoV-2 infection, with likely implications for waning immunity following infection and the use of IgG-N in population surveys.

5.
Nat Commun ; 14(1): 2799, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193713

ABSTRACT

Following primary SARS-CoV-2 vaccination, whether boosters or breakthrough infections provide greater protection against SARS-CoV-2 infection is incompletely understood. Here we investigated SARS-CoV-2 antibody correlates of protection against new Omicron BA.4/5 (re-)infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults ≥18 y from the United Kingdom general population. Higher antibody levels were associated with increased protection against Omicron BA.4/5 infection and breakthrough infections were associated with higher levels of protection at any given antibody level than boosters. Breakthrough infections generated similar antibody levels to boosters, and the subsequent antibody declines were slightly slower than after boosters. Together our findings show breakthrough infection provides longer-lasting protection against further infections than booster vaccinations. Our findings, considered alongside the risks of severe infection and long-term consequences of infection, have important implications for vaccine policy.


Subject(s)
Breakthrough Infections , COVID-19 , Adult , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Viral , Reinfection , United Kingdom/epidemiology , Vaccination
6.
Lancet Infect Dis ; 23(8): 922-932, 2023 08.
Article in English | MEDLINE | ID: mdl-37001541

ABSTRACT

BACKGROUND: Antigen lateral flow devices (LFDs) have been widely used to control SARS-CoV-2. We aimed to improve understanding of LFD performance with changes in variant infections, vaccination, viral load, and LFD use, and in the detection of infectious individuals. METHODS: In this diagnostic study, paired LFD and RT-PCR test results were prospectively collected from asymptomatic and symptomatic participants in the UK between Nov 4, 2020, and March 21, 2022, to support the National Health Service (NHS) England's Test and Trace programme. The LFDs evaluated were the Innova SARS-CoV-2 Antigen Rapid Qualitative Test, the Orient Gene Rapid Covid-19 (Antigen) Self-Test, and the Acon Flowflex SARS-CoV-2 Antigen Rapid Test (Self-Testing). Test results were collected across various community testing settings, including predeployment testing sites, routine testing centres, homes, schools, universities, workplaces, targeted community testing, and from health-care workers. We used multivariable logistic regression to analyse LFD sensitivity and specificity using RT-PCR as a reference standard, adjusting for viral load, LFD manufacturer, test setting, age, sex, test assistance, symptom status, vaccination status, and SARS-CoV-2 variant. National contact tracing data from NHS Test and Trace (Jan 1, 2021, to Jan 11, 2022) were used to estimate the proportion of transmitting index patients (with ≥1 RT-PCR-positive or LFD-positive contact) potentially detectable by LFDs (specifically Innova, as the most widely used LFD) with time, accounting for index viral load, variant, and symptom status. FINDINGS: We assessed 75 382 pairs of LFD and RT-PCR tests. Of these, 4131 (5·5%) were RT-PCR-positive. LFD sensitivity versus RT-PCR was 63·2% (95% CI 61·7-64·6) and specificity was 99·71% (95% CI 99·66-99·74). Increased viral load was independently associated with being LFD positive (adjusted odds ratio [aOR] 2·85 [95% CI 2·66-3·06] per 1 log10 copies per mL increase; p<0·0001). There was no evidence that LFD sensitivity differed for delta (B.1.617.2) infections versus alpha (B.1.1.7) or pre-alpha (B.1.177) infections (aOR 1·00 [0·69-1·45]; p=0·99), whereas omicron (BA.1 or BA.2) infections appeared more likely to be LFD positive (aOR 1·63 [1·02-2·59]; p=0·042). Sensitivity was higher in symptomatic participants (68·7% [95% CI 66·9-70·4]) than in asymptomatic participants (52·8% [50·1-55·4]). Among 347 374 unique index patients with probable onward transmission, 78·3% (95% CI 75·3-81·2) were estimated to have been detectable with LFDs (Innova), and this proportion was mostly stable with time and for successive variants. Overall, the estimated proportion of infectious index patients detectable by the Innova LFD was lower in asymptomatic patients (57·6% [53·6-61·9]) versus symptomatic patients (79·7% [76·7-82·5]). INTERPRETATION: LFDs remained able to detect most SARS-CoV-2 infections throughout vaccine roll-out and across different viral variants. LFDs can potentially detect most infections that transmit to others and reduce the risk of transmission. However, performance is lower in asymptomatic individuals than in symptomatic individuals. FUNDING: UK Health Security Agency, the UK Government Department of Health and Social Care, National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, and the University of Oxford NIHR Biomedical Research Centre.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , State Medicine , United Kingdom/epidemiology , COVID-19 Testing
7.
Sci Rep ; 13(1): 3858, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36890179

ABSTRACT

We aimed to assess the frequency of value preferences in recording of vital signs in electronic healthcare records (EHRs) and associated patient and hospital factors. We used EHR data from Oxford University Hospitals, UK, between 01-January-2016 and 30-June-2019 and a maximum likelihood estimator to determine the prevalence of value preferences in measurements of systolic and diastolic blood pressure (SBP/DBP), heart rate (HR) (readings ending in zero), respiratory rate (multiples of 2 or 4), and temperature (readings of 36.0 °C). We used multivariable logistic regression to investigate associations between value preferences and patient age, sex, ethnicity, deprivation, comorbidities, calendar time, hour of day, days into admission, hospital, day of week and speciality. In 4,375,654 records from 135,173 patients, there was an excess of temperature readings of 36.0 °C above that expected from the underlying distribution that affected 11.3% (95% CI 10.6-12.1%) of measurements, i.e. these observations were likely inappropriately recorded as 36.0 °C instead of the true value. SBP, DBP and HR were rounded to the nearest 10 in 2.2% (1.4-2.8%) and 2.0% (1.3-5.1%) and 2.4% (1.7-3.1%) of measurements. RR was also more commonly recorded as multiples of 2. BP digit preference and an excess of temperature recordings of 36.0 °C were more common in older and male patients, as length of stay increased, following a previous normal set of vital signs and typically more common in medical vs. surgical specialities. Differences were seen between hospitals, however, digit preference reduced over calendar time. Vital signs may not always be accurately documented, and this may vary by patient groups and hospital settings. Allowances and adjustments may be needed in delivering care to patients and in observational analyses and predictive tools using these factors as outcomes or exposures.


Subject(s)
Electronic Health Records , Vital Signs , Humans , Male , Aged , Blood Pressure , Hospitals, University , Demography
8.
Lancet Microbe ; 4(2): e84-e92, 2023 02.
Article in English | MEDLINE | ID: mdl-36549315

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis whole-genome sequencing (WGS) has been widely used for genotypic drug susceptibility testing (DST) and outbreak investigation. For both applications, Illumina technology is used by most public health laboratories; however, Nanopore technology developed by Oxford Nanopore Technologies has not been thoroughly evaluated. The aim of this study was to determine whether Nanopore sequencing data can provide equivalent information to Illumina for transmission clustering and genotypic DST for M tuberculosis. METHODS: In this genomic analysis, we analysed 151 M tuberculosis isolates from Madagascar, South Africa, and England, which were collected between 2011 and 2018, using phenotypic DST and matched Illumina and Nanopore data. Illumina sequencing was done with the MiSeq, HiSeq 2500, or NextSeq500 platforms and Nanopore sequencing was done on the MinION or GridION platforms. Using highly reliable PacBio sequencing assemblies and pairwise distance correlation between Nanopore and Illumina data, we optimise Nanopore variant filters for detecting single-nucleotide polymorphisms (SNPs; using BCFtools software). We then used those SNPs to compare transmission clusters identified by Nanopore with the currently used UK Health Security Agency Illumina pipeline (COMPASS). We compared Illumina and Nanopore WGS-based DST predictions using the Mykrobe software and mutation catalogue. FINDINGS: The Nanopore BCFtools pipeline identified SNPs with a median precision of 99·3% (IQR 99·1-99·6) and recall of 90·2% (88·1-94·2) compared with a precision of 99·6% (99·4-99·7) and recall of 91·9% (87·6-98·6) using the Illumina COMPASS pipeline. Using a threshold of 12 SNPs for putative transmission clusters, Illumina identified 98 isolates as unrelated and 53 as belonging to 19 distinct clusters (size range 2-7). Nanopore reproduced 15 out of 19 clusters perfectly; two clusters were merged into one cluster, one cluster had a single sample missing, and one cluster had an additional sample adjoined. Illumina-based clusters were also closely replicated using a five SNP threshold and clustering accuracy was maintained using mixed Illumina and Nanopore datasets. Genotyping resistance variants with Nanopore was highly concordant with Illumina, having zero discordant SNPs across more than 3000 SNPs and four insertions or deletions (indels), across 60 000 indels. INTERPRETATION: Illumina and Nanopore technologies can be used independently or together by public health laboratories performing M tuberculosis genotypic DST and outbreak investigations. As a result, clinical and public health institutions making decisions on which sequencing technology to adopt for tuberculosis can base the choice on cost (which varies by country), batching, and turnaround time. FUNDING: Academy for Medical Sciences, Oxford Wellcome Institutional Strategic Support Fund, and the Swiss South Africa Joint Research Award (Swiss National Science Foundation and South African National Research Foundation).


Subject(s)
Mycobacterium tuberculosis , Nanopore Sequencing , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Microbial Sensitivity Tests , Sequence Analysis, DNA , Genomics , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Disease Outbreaks
9.
Clin Infect Dis ; 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35917440

ABSTRACT

BACKGROUND: The SARS-CoV-2 Delta variant has been replaced by the highly transmissible Omicron BA.1 variant, and subsequently by Omicron BA.2. It is important to understand how these changes in dominant variants affect reported symptoms, while also accounting for symptoms arising from other co-circulating respiratory viruses. METHODS: In a nationally representative UK community study, the COVID-19 Infection Survey, we investigated symptoms in PCR-positive infection episodes vs. PCR-negative study visits over calendar time, by age and vaccination status, comparing periods when the Delta, Omicron BA.1 and BA.2 variants were dominant. RESULTS: Between October-2020 and April-2022, 120,995 SARS-CoV-2 PCR-positive episodes occurred in 115,886 participants, with 70,683 (58%) reporting symptoms. The comparator comprised 4,766,366 PCR-negative study visits (483,894 participants); 203,422 (4%) reporting symptoms. Symptom reporting in PCR-positives varied over time, with a marked reduction in loss of taste/smell as Omicron BA.1 dominated, maintained with BA.2 (44%/45% 17 October 2021, 16%/13% 2 January 2022, 15%/12% 27 March 2022). Cough, fever, shortness of breath, myalgia, fatigue/weakness and headache also decreased after Omicron BA.1 dominated, but sore throat increased, the latter to a greater degree than concurrent increases in PCR-negatives. Fatigue/weakness increased again after BA.2 dominated, although to a similar degree to concurrent increases in PCR-negatives. Symptoms were consistently more common in adults aged 18-65 years than in children or older adults. CONCLUSIONS: Increases in sore throat (also common in the general community), and a marked reduction in loss of taste/smell, make Omicron harder to detect with symptom-based testing algorithms, with implications for institutional and national testing policies.

10.
Commun Med (Lond) ; 2: 101, 2022.
Article in English | MEDLINE | ID: mdl-35968045

ABSTRACT

Background: Gram-negative organisms are common causes of bloodstream infection (BSI) during the neonatal period and early childhood. Whilst several large studies have characterised these isolates in adults, equivalent data (particularly incorporating whole genome sequencing) is lacking in the paediatric population. Methods: We perform an epidemiological and sequencing based analysis of Gram-negative bloodstream infections (327 isolates (296 successfully sequenced) from 287 patients) in children <18 years old between 2008 and 2018 in Oxfordshire, UK. Results: Here we show that the burden of infection lies predominantly in neonates and that most infections are caused by Escherichia coli, Klebsiella spp. and Enterobacter hormaechei. There is no evidence in our setting that the proportion of antimicrobial resistant isolates is increasing in the paediatric population although we identify some evidence of sub-breakpoint increases in gentamicin resistance. The population structure of E. coli BSI isolates in neonates and children mirrors that in adults with a predominance of STs 131/95/73/69 and the same proportions of O-antigen serotypes. In most cases in our setting there is no evidence of transmission/point-source acquisition and we demonstrate the utility of whole genome sequencing to refute a previously suspected outbreak. Conclusions: Our findings support continued use of current empirical treatment guidelines and suggest that O-antigen targeted vaccines may have a role in reducing the incidence of neonatal sepsis.

11.
J Infect ; 85(4): 382-389, 2022 10.
Article in English | MEDLINE | ID: mdl-35840011

ABSTRACT

OBJECTIVES: To evaluate the effectiveness of an antimicrobial guideline for vancomycin prescribing deployed using electronic prescribing aid and web/phone-based app. To define factors associated with guideline compliance and drug levels, and to investigate if antimicrobial dosing recommendations can be refined using routinely collected electronic healthcare record data. METHODS: We used data from Oxford University Hospitals between 01-January-2016 and 01-June-2021 and multivariable regression models to investigate factors associated with dosing compliance, drug levels and acute kidney injury (AKI). RESULTS: 3767 patients received intravenous vancomycin for ≥24 h. Compliance with recommended loading and initial maintenance doses reached 84% and 70% respectively; 72% of subsequent maintenance doses were correctly adjusted. However, only 26% first and 32% subsequent levels reached the target range, and for patients with ongoing vancomycin treatment, 55-63% achieved target levels at 5 days. Drug levels were independently higher in older patients. Incidence of AKI was low (5.7%). Model estimates were used to propose updated age, weight and eGFR specific guidelines. CONCLUSION: Despite good compliance with guidelines for vancomycin dosing, the proportion of drug levels achieving the target range remained suboptimal. Routinely collected electronic data can be used at scale to inform pharmacokinetic studies and could improve vancomycin dosing.


Subject(s)
Acute Kidney Injury , Vancomycin , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Administration, Intravenous , Aged , Anti-Bacterial Agents , Drug Monitoring , Humans , Retrospective Studies , Vancomycin/therapeutic use
12.
Nat Commun ; 13(1): 3748, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768431

ABSTRACT

Given high SARS-CoV-2 incidence, coupled with slow and inequitable vaccine roll-out in many settings, there is a need for evidence to underpin optimum vaccine deployment, aiming to maximise global population immunity. We evaluate whether a single vaccination in individuals who have already been infected with SARS-CoV-2 generates similar initial and subsequent antibody responses to two vaccinations in those without prior infection. We compared anti-spike IgG antibody responses after a single vaccination with ChAdOx1, BNT162b2, or mRNA-1273 SARS-CoV-2 vaccines in the COVID-19 Infection Survey in the UK general population. In 100,849 adults median (50 (IQR: 37-63) years) receiving at least one vaccination, 13,404 (13.3%) had serological/PCR evidence of prior infection. Prior infection significantly boosted antibody responses, producing higher peak levels and/or longer half-lives after one dose of all three vaccines than those without prior infection receiving one or two vaccinations. In those with prior infection, the median time above the positivity threshold was >1 year after the first vaccination. Single-dose vaccination targeted to those previously infected may provide at least as good protection to two-dose vaccination among those without previous infection.


Subject(s)
COVID-19 , Viral Vaccines , Adult , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
13.
J Antimicrob Chemother ; 77(9): 2536-2545, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35723965

ABSTRACT

BACKGROUND: Reported bacteraemia outcomes following inactive empirical antibiotics (based on in vitro testing) are conflicting, potentially reflecting heterogeneity in causative species, MIC breakpoints defining resistance/susceptibility, and times to rescue therapy. METHODS: We investigated adult inpatients with Escherichia coli bacteraemia at Oxford University Hospitals, UK, from 4 February 2014 to 30 June 2021 who were receiving empirical amoxicillin/clavulanate with/without other antibiotics. We used Cox regression to analyse 30 day all-cause mortality by in vitro amoxicillin/clavulanate susceptibility (activity) using the EUCAST resistance breakpoint (>8/2 mg/L), categorical MIC, and a higher resistance breakpoint (>32/2 mg/L), adjusting for other antibiotic activity and confounders including comorbidities, vital signs and blood tests. RESULTS: A total of 1720 E. coli bacteraemias (1626 patients) were treated with empirical amoxicillin/clavulanate. Thirty-day mortality was 193/1400 (14%) for any active baseline therapy and 52/320 (16%) for inactive baseline therapy (P = 0.17). With EUCAST breakpoints, there was no evidence that mortality differed for inactive versus active amoxicillin/clavulanate [adjusted HR (aHR) = 1.27 (95% CI 0.83-1.93); P = 0.28], nor of an association with active aminoglycoside (P = 0.93) or other active antibiotics (P = 0.18). Considering categorical amoxicillin/clavulanate MIC, MICs > 32/2 mg/L were associated with mortality [aHR = 1.85 versus MIC = 2/2 mg/L (95% CI 0.99-3.73); P = 0.054]. A higher resistance breakpoint (>32/2 mg/L) was independently associated with higher mortality [aHR = 1.82 (95% CI 1.07-3.10); P = 0.027], as were MICs > 32/2 mg/L with active empirical aminoglycosides [aHR = 2.34 (95% CI 1.40-3.89); P = 0.001], but not MICs > 32/2 mg/L with active non-aminoglycoside antibiotic(s) [aHR = 0.87 (95% CI 0.40-1.89); P = 0.72]. CONCLUSIONS: We found no evidence that EUCAST-defined amoxicillin/clavulanate resistance was associated with increased mortality, but a higher resistance breakpoint (MIC > 32/2 mg/L) was. Additional active baseline non-aminoglycoside antibiotics attenuated amoxicillin/clavulanate resistance-associated mortality, but aminoglycosides did not. Granular phenotyping and comparison with clinical outcomes may improve AMR breakpoints.


Subject(s)
Bacteremia , Escherichia coli Infections , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Amoxicillin-Potassium Clavulanate Combination/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Electronic Health Records , Escherichia coli , Escherichia coli Infections/drug therapy , Humans , Microbial Sensitivity Tests
14.
J Infect ; 85(1): 31-39, 2022 07.
Article in English | MEDLINE | ID: mdl-35595102

ABSTRACT

BACKGROUND: The prevalence, association with disease status, and public health impact of infection with mixtures of M. tuberculosis strains is unclear, in part due to limitations of existing methods for detecting mixed infections. METHODS: We developed an algorithm to identify mixtures of M. tuberculosis strains using next generation sequencing data, assessing performance using simulated sequences. We identified mixed M. tuberculosis strains when there was at least one mixed nucleotide position, and where both the mixture's components were present in similar isolates from other individuals, compatible with transmission of the component strains. We determined risk factors for mixed infection among isolations of M. tuberculosis in England using logistic regression. We used survival analyses to assess the association between mixed infection and putative transmission. FINDINGS: 6,560 isolations of TB were successfully sequenced in England 2016-2018. Of 3,691 (56%) specimens for which similar sequences had been isolated from at least two other individuals, 341 (9.2%) were mixed. Mixed infection was more common in lineages other than Lineage 4. Among the 1,823 individuals with pulmonary infection with Lineage 4 M. tuberculosis, mixed infection was associated with significantly increased risk of subsequent isolation of closely related organisms from a different individual (HR 1.43, 95% CI 1.05,1.94), indicative of transmission. INTERPRETATION: Mixtures of transmissible strains occur in at least 5% of tuberculosis infections in England; when present in pulmonary disease, such mixtures are associated with an increased risk of tuberculosis transmission. FUNDING: Public Health England; NIHR Health Protection Research Units; European Union.


Subject(s)
Coinfection , Mycobacterium tuberculosis , Tuberculosis , High-Throughput Nucleotide Sequencing , Humans , Mycobacterium tuberculosis/genetics , Prospective Studies , Tuberculosis/diagnosis
15.
BMC Public Health ; 22(1): 742, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418065

ABSTRACT

BACKGROUND: Daily testing using a rapid Lateral Flow Device (LFD) has been suggested as an alternative to self-isolation. A randomised trial comparing daily contact testing (DCT) in schools with self-isolation found that SARS-CoV-2 transmission within school was comparable and low in both groups. However, if this approach is to be adopted widely, it is critical that we understand the perspective of those who will be delivering and receiving DCT. The aim of this qualitative process study embedded in the randomised controlled trial (RCT) was to improve understanding of a range of behavioural factors that could influence implementation. METHODS: Interviews were conducted with 63 participants, including staff, students, and parents of students who had been identified as being in close contact with someone with COVID-19. The topic guide explored perceptions of daily testing, understanding of positive and negative test results, and adherence to guidance. Data were analysed using an inductive thematic approach. RESULTS: Results were organised under three main headings: (1) factors influencing daily testing (2) interpretation of test results (3) behaviour during testing period. Participants recognized that daily testing may allow students to remain in school, which was viewed as necessary for both education and social needs. Whilst some felt safer as a result of daily testing, others raised concerns about safety. Participants did not always understand how to interpret and respond to test results, and although participants reported high levels of adherence to the guidance, improved communications were desired. CONCLUSION: Daily testing may be a feasible and acceptable alternative to self-isolation among close contacts of people who test positive. However, improved communications are needed to ensure that all students and parents have a good understanding of the rationale for testing, what test results mean, how test results should be acted on, and how likely students are to test positive following close contact. Support is needed for students and parents of students who have to self-isolate and for those who have concerns about the safety of daily testing.


Subject(s)
COVID-19 , COVID-19 Testing , Feasibility Studies , Humans , SARS-CoV-2 , Schools
16.
Nat Med ; 28(5): 1072-1082, 2022 05.
Article in English | MEDLINE | ID: mdl-35165453

ABSTRACT

Antibody responses are an important part of immunity after Coronavirus Disease 2019 (COVID-19) vaccination. However, antibody trajectories and the associated duration of protection after a second vaccine dose remain unclear. In this study, we investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United Kingdom general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by the second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Older individuals and males had lower peak levels with BNT162b2 but not ChAdOx1, whereas declines were similar across ages and sexes with ChAdOX1 or BNT162b2. Prior infection significantly increased antibody peak level and half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2-3 months after two ChAdOx1 doses, for 5-8 months after two BNT162b2 doses in those without prior infection and for 1-2 years for those unvaccinated after natural infection. A third booster dose might be needed, prioritized to ChAdOx1 recipients and those more clinically vulnerable.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunoglobulin G , Male
17.
N Engl J Med ; 386(8): 744-756, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34986294

ABSTRACT

BACKGROUND: Before the emergence of the B.1.617.2 (delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccination reduced transmission of SARS-CoV-2 from vaccinated persons who became infected, potentially by reducing viral loads. Although vaccination still lowers the risk of infection, similar viral loads in vaccinated and unvaccinated persons who are infected with the delta variant call into question the degree to which vaccination prevents transmission. METHODS: We used contact-testing data from England to perform a retrospective observational cohort study involving adult contacts of SARS-CoV-2-infected adult index patients. We used multivariable Poisson regression to investigate associations between transmission and the vaccination status of index patients and contacts and to determine how these associations varied with the B.1.1.7 (alpha) and delta variants and time since the second vaccination. RESULTS: Among 146,243 tested contacts of 108,498 index patients, 54,667 (37%) had positive SARS-CoV-2 polymerase-chain-reaction (PCR) tests. In index patients who became infected with the alpha variant, two vaccinations with either BNT162b2 or ChAdOx1 nCoV-19 (also known as AZD1222), as compared with no vaccination, were independently associated with reduced PCR positivity in contacts (adjusted rate ratio with BNT162b2, 0.32; 95% confidence interval [CI], 0.21 to 0.48; and with ChAdOx1 nCoV-19, 0.48; 95% CI, 0.30 to 0.78). Vaccine-associated reductions in transmission of the delta variant were smaller than those with the alpha variant, and reductions in transmission of the delta variant after two BNT162b2 vaccinations were greater (adjusted rate ratio for the comparison with no vaccination, 0.50; 95% CI, 0.39 to 0.65) than after two ChAdOx1 nCoV-19 vaccinations (adjusted rate ratio, 0.76; 95% CI, 0.70 to 0.82). Variation in cycle-threshold (Ct) values (indicative of viral load) in index patients explained 7 to 23% of vaccine-associated reductions in transmission of the two variants. The reductions in transmission of the delta variant declined over time after the second vaccination, reaching levels that were similar to those in unvaccinated persons by 12 weeks in index patients who had received ChAdOx1 nCoV-19 and attenuating substantially in those who had received BNT162b2. Protection in contacts also declined in the 3-month period after the second vaccination. CONCLUSIONS: Vaccination was associated with a smaller reduction in transmission of the delta variant than of the alpha variant, and the effects of vaccination decreased over time. PCR Ct values at diagnosis of the index patient only partially explained decreased transmission. (Funded by the U.K. Government Department of Health and Social Care and others.).


Subject(s)
BNT162 Vaccine , COVID-19/transmission , ChAdOx1 nCoV-19 , Disease Transmission, Infectious/prevention & control , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , England , Female , Humans , Male , Middle Aged , Retrospective Studies , Viral Load
18.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37503960

ABSTRACT

BACKGROUND: Large routinely collected data such as electronic health records (EHRs) are increasingly used in research, but the statistical methods and processes used to check such data for temporal data quality issues have not moved beyond manual, ad hoc production and visual inspection of graphs. With the prospect of EHR data being used for disease surveillance via automated pipelines and public-facing dashboards, automation of data quality checks will become increasingly valuable. FINDINGS: We generated 5,526 time series from 8 different EHR datasets and engaged >2,000 citizen-science volunteers to label the locations of all suspicious-looking change points in the resulting graphs. Consensus labels were produced using density-based clustering with noise, with validation conducted using 956 images containing labels produced by an experienced data scientist. Parameter tuning was done against 670 images and performance calculated against 286 images, resulting in a final sensitivity of 80.4% (95% CI, 77.1%-83.3%), specificity of 99.8% (99.7%-99.8%), positive predictive value of 84.5% (81.4%-87.2%), and negative predictive value of 99.7% (99.6%-99.7%). In total, 12,745 change points were found within 3,687 of the time series. CONCLUSIONS: This large collection of labelled EHR time series can be used to validate automated methods for change point detection in real-world settings, encouraging the development of methods that can successfully be applied in practice. It is particularly valuable since change point detection methods are typically validated using synthetic data, so their performance in real-world settings cannot be assumed to be comparable. While the dataset focusses on EHRs and data quality, it should also be applicable in other fields.


Subject(s)
Crowdsourcing , Hiccup , Humans , Time Factors , Electronic Health Records
19.
J Infect ; 84(3): 311-320, 2022 03.
Article in English | MEDLINE | ID: mdl-34963640

ABSTRACT

OBJECTIVES: Initiatives to curb hospital antibiotic use might be associated with harm from under-treatment. We examined the extent to which variation in hospital antibiotic prescribing is associated with mortality risk in acute/general medicine inpatients. METHODS: This ecological analysis examined Hospital Episode Statistics from 36,124,372 acute/general medicine admissions (≥16y) to 135 acute hospitals in England, 01/April/2010-31/March/2017. Random-effects meta-regression was used to investigate whether heterogeneity in adjusted 30-day mortality was associated with hospital-level antibiotic use, measured in defined-daily-doses (DDD)/1,000 bed-days. Models also considered DDDs/1,000 admissions and DDDs for narrow-spectrum/broad-spectrum antibiotics, parenteral/oral, and local interpretations of World Health Organization Access, Watch, and Reserve antibiotics. RESULTS: Hospital-level antibiotic DDDs/1,000 bed-days varied 15-fold with comparable variation in broad-spectrum, parenteral, and Reserve antibiotic use. After extensive adjusting for hospital case-mix, the probability of 30-day mortality changed -0.010% (95% CI: -0.064,+0.044) for each increase of 500 hospital-level antibiotic DDDs/1,000 bed-days. Analyses of other metrics of antibiotic use showed no consistent association with mortality risk. CONCLUSIONS: We found no evidence that wide variation in hospital antibiotic use is associated with adjusted mortality risk in acute/general medicine inpatients. Using low-prescribing hospitals as benchmarks could help drive safe and substantial reductions in antibiotic consumption of up-to one-third in this population.


Subject(s)
Anti-Bacterial Agents , Hospitals , England/epidemiology , Humans
20.
Clin Infect Dis ; 75(1): e329-e337, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34748629

ABSTRACT

BACKGROUND: "Classic" symptoms (cough, fever, loss of taste/smell) prompt severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing in the United Kingdom. Studies have assessed the ability of different symptoms to identify infection, but few have compared symptoms over time (reflecting variants) and by vaccination status. METHODS: Using the COVID-19 Infection Survey, sampling households across the United Kingdom, we compared symptoms in PCR-positives vs PCR-negatives, evaluating sensitivity of combinations of 12 symptoms (percentage symptomatic PCR-positives reporting specific symptoms) and tests per case (TPC) (PCR-positives or PCR-negatives reporting specific symptoms/ PCR-positives reporting specific symptoms). RESULTS: Between April 2020 and August 2021, 27 869 SARS-CoV-2 PCR-positive episodes occurred in 27 692 participants (median 42 years), of whom 13 427 (48%) self-reported symptoms ("symptomatic PCR-positives"). The comparator comprised 3 806 692 test-negative visits (457 215 participants); 130 612 (3%) self-reported symptoms ("symptomatic PCR-negatives"). Symptom reporting in PCR-positives varied by age, sex, and ethnicity, and over time, reflecting changes in prevalence of viral variants, incidental changes (eg, seasonal pathogens (with sore throat increasing in PCR-positives and PCR-negatives from April 2021), schools reopening) and vaccination rollout. After May 2021 when Delta emerged, headache and fever substantially increased in PCR-positives, but not PCR-negatives. Sensitivity of symptom-based detection increased from 74% using "classic" symptoms, to 81% adding fatigue/weakness, and 90% including all 8 additional symptoms. However, this increased TPC from 4.6 to 5.3 to 8.7. CONCLUSIONS: Expanded symptom combinations may provide modest benefits for sensitivity of PCR-based case detection, but this will vary between settings and over time, and increases tests/case. Large-scale changes to targeted PCR-testing approaches require careful evaluation given substantial resource and infrastructure implications.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Fever/etiology , Humans , SARS-CoV-2/genetics , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...